PKU Globex Julmester

Applied Analysis for Engineering Sciences (3 Credits)

工程科学应用分析

(Course Code: 00333148)

Instructor	Emily TIAN, Wright State University (mei.tian@wright.edu)		
	TANG Shaoqiang, Peking University (maotang@pku.edu.cn)		
Synopsis	The objectives of this course include: to show mathematical methods that are widely used in engineering sciences; to explore linear and nonlinear differential equations; to help bridge the gap between mathematical tools and physical understandings.		
Audience	Year 2+ Undergraduate and Graduate Students		
	Prerequisites: Calculus (Single variate, and multi-variate), Linear Algebra.		
Classroom	ТВА		
Schedule	<u>Class</u> : 9-12 AM, M-F, June 30 – July	18, 2025	Total Contact Hours: 45
Topics	 Recap: how to solve Ordinary Differential Equations (ODEs) exactly? a) Linear ODEs with constant coefficients b) General ODEs: inhomogeneous, variable coefficients, power series and perturbation method Qualitative theory of ODEs a) Plane analysis for second order ODE b) Stability analysis via Lyapunov function c) Bifurcation and chaos Solving PDEs: linear and nonlinear a) Laplace equation: separating variables, Green's function (* spherical and cylindrical coordinates) b) Heat equation: Fourier transform, Green's function c) Wave equation: characteristic method, D'Alembert's principle d) Nonlinear equations: Burgers' equation via Cole-Hopf transform, shock and rarefaction waves in inviscid Burgers' equation (* traveling waves) 		
Grading	Homework Assignments 40% Exam (open-book) 60% Total 100%		